Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.05.08.23289659

ABSTRACT

Objective: To quantify the increase in pediatric patients presenting to the emergency department with suicidality before and during the COVID-19 pandemic, and the subsequent impact on emergency department length of stay and boarding. Methods: This retrospective cohort study from June 1, 2016, to October 31, 2022, identified patients presenting to the emergency department with suicidality using ICD-10 codes. Number of emergency department encounters for suicidality, demographic characteristics of patients with suicidality, and emergency department length of stay were compared before and during the COVID-19 pandemic. Unobserved components models were used to describe monthly counts of emergency department encounters for suicidality. Results: There were 179,736 patient encounters to the emergency department during the study period, 6,168 (3.4%) for suicidality. There were, on average, more encounters for suicidality each month during the COVID-19 pandemic than before the COVID-19 pandemic. A time series unobserved components model demonstrated an initial drop in encounters for suicidality in April and May of 2020, followed by an increase starting in July 2020. The average length of stay for patients that boarded in the emergency department with a diagnosis of suicidality was 37.4 hours longer during the COVID-19 pandemic compared to before the COVID-19 pandemic. Conclusions: The number of encounters for suicidality among pediatric patients and the emergency department length of stay for psychiatry boarders has increased during the COVID-19 pandemic. There is a need for acute care mental health services and solutions to emergency department capacity issues.


Subject(s)
COVID-19 , Romano-Ward Syndrome
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.19.23284738

ABSTRACT

Objective: To identify a cohort of COVID-19 cases, including when evidence of virus positivity was only mentioned in the clinical text, not in structured laboratory data in the electronic health record (EHR). Materials and Methods: Statistical classifiers were trained on feature representations derived from unstructured text in patient electronic health records (EHRs). We used a proxy dataset of patients with COVID-19 polymerase chain reaction (PCR) tests for training. We selected a model based on performance on our proxy dataset and applied it to instances without COVID-19 PCR tests. A physician reviewed a sample of these instances to validate the classifier. Results: On the test split of the proxy dataset, our best classifier obtained 0.56 F1, 0.6 precision, and 0.52 recall scores for SARS-CoV2 positive cases. In an expert validation, the classifier correctly identified 90.8% (79/87) as COVID-19 positive and 97.8% (91/93) as not SARS-CoV2 positive. The classifier identified an additional 960 positive cases that did not have SARS-CoV2 lab tests in hospital, and only 177 of those cases had the ICD-10 code for COVID-19. Discussion: Proxy dataset performance may be worse because these instances sometimes include discussion of pending lab tests. The most predictive features are meaningful and interpretable. The type of external test that was performed is rarely mentioned. Conclusion: COVID-19 cases that had testing done outside of the hospital can be reliably detected from the text in EHRs. Training on a proxy dataset was a suitable method for developing a highly performant classifier without labor intensive labeling efforts.


Subject(s)
COVID-19
4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3524675
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423363

ABSTRACT

Our understanding of protective vs. pathologic immune responses to SARS-CoV-2, the virus that causes Coronavirus disease 2019 (COVID-19), is limited by inadequate profiling of patients at the extremes of the disease severity spectrum. Here, we performed multi-omic single-cell immune profiling of 64 COVID-19 patients across the full range of disease severity, from outpatients with mild disease to fatal cases. Our transcriptomic, epigenomic, and proteomic analyses reveal widespread dysfunction of peripheral innate immunity in severe and fatal COVID-19, with the most profound disturbances including a prominent neutrophil hyperactivation signature and monocytes with anti-inflammatory features. We further demonstrate that emergency myelopoiesis is a prominent feature of fatal COVID-19. Collectively, our results reveal disease severity-associated immune phenotypes in COVID-19 and identify pathogenesis-associated pathways that are potential targets for therapeutic intervention.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.16.20247684

ABSTRACT

Objectives: To perform an international comparison of the trajectory of laboratory values among hospitalized patients with COVID-19 who develop severe disease and identify optimal timing of laboratory value collection to predict severity across hospitals and regions. Design: Retrospective cohort study. Setting: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE), an international multi-site data-sharing collaborative of 342 hospitals in the US and in Europe. Participants: Patients hospitalized with COVID-19, admitted before or after PCR-confirmed result for SARS-CoV-2. Primary and secondary outcome measures: Patients were categorized as ''ever-severe'' or ''never-severe'' using the validated 4CE severity criteria. Eighteen laboratory tests associated with poor COVID-19-related outcomes were evaluated for predictive accuracy by area under the curve (AUC), compared between the severity categories. Subgroup analysis was performed to validate a subset of laboratory values as predictive of severity against a published algorithm. A subset of laboratory values (CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin) was compared between North American and European sites for severity prediction. Results: Of 36,447 patients with COVID-19, 19,953 (43.7%) were categorized as ever-severe. Most patients (78.7%) were 50 years of age or older and male (60.5%). Longitudinal trajectories of CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin showed association with disease severity. Significant differences of laboratory values at admission were found between the two groups. With the exception of D-dimer, predictive discrimination of laboratory values did not improve after admission. Sub-group analysis using age, D-dimer, CRP, and lymphocyte count as predictive of severity at admission showed similar discrimination to a published algorithm (AUC=0.88 and 0.91, respectively). Both models deteriorated in predictive accuracy as the disease progressed. On average, no difference in severity prediction was found between North American and European sites. Conclusions: Laboratory test values at admission can be used to predict severity in patients with COVID-19. There is a need for prediction models that will perform well over the course of the disease in hospitalized patients.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423439

ABSTRACT

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has presented a crisis for global healthcare systems. Human SARS-CoV-2 infection can result in coronavirus disease 2019 (COVID-19), which has been characterised as an acute respiratory illness, with most patients displaying flu-like symptoms, such as a fever, cough and dyspnoea. However, the range and severity of individual symptoms experienced by patients can vary significantly, indicating a role for host genetics in impacting the susceptibility and severity of COVID-19 disease. Whilst most symptomatic infections are known to manifest in mild to moderate respiratory symptoms, severe pneumonia and complications including cytokine release syndrome, which can lead to multi-organ dysfunction, have also been observed in cases worldwide. Global initiatives to sequence the genomes of patients with COVID-19 have driven an expanding new field of host genomics research, to characterise the genetic determinants of COVID-19 disease. The functional annotation and analysis of incoming genomic data, within a clinically relevant turnaround time, is therefore imperative given the importance and urgency of research efforts to understand the biology of SARS-CoV-2 infection and disease. To address these requirements, we developed SNPnexus COVID. This is a web-based variant annotation tool, powered by the SNPnexus software.


Subject(s)
Coronavirus Infections , Signs and Symptoms, Respiratory , Fever , Pneumonia , Cough , COVID-19 , Respiratory Insufficiency
8.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.18.423467

ABSTRACT

Reverse Transcriptase - Polymerase Chain Reaction (RT-PCR) is the gold standard as diagnostic assays for the detection of COVID-19 and the specificity and sensitivity of these assays depend on the complementarity of the RT-PCR primers to the genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since the virus mutates over time during replication cycles, there is an urgent need to continuously monitor the virus genome for appearances of mutations and mismatches in the PCR primers used in these assays. Here we present assayM, a web application to explore and monitor mutations introduced in the primer and probe sequences published by the World Health Organisation (WHO) or in any custom-designed assay primers for SARS-CoV-2 detection assays in globally available SARS-CoV-2 genome datasets.


Subject(s)
COVID-19 , Coronavirus Infections
9.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.16.423178

ABSTRACT

Since the first identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in China in late December 2019, the coronavirus disease 2019 (COVID-19) has spread fast around the world. RNA viruses, including SARS-CoV-2, have higher gene mutations than DNA viruses during virus replication. Variations in SARS-CoV-2 genome could contribute to efficiency of viral spread and severity of COVID-19. In this study, we analyzed the locations of genomic mutations to investigate the genetic diversity among isolates of SARS-CoV-2 in Gwangju. We detected non-synonymous and frameshift mutations in various parts of SARS-CoV-2 genome. The phylogenetic analysis for whole genome showed that SARS-CoV-2 genomes in Gwangju isolates are clustered within clade V and G. Our findings not only provide a glimpse into changes of prevalent virus clades in Gwangju, South Korea, but also support genomic surveillance of SARS-CoV-2 to aid in the development of efficient therapeutic antibodies and vaccines against COVID-19.


Subject(s)
Coronavirus Infections , COVID-19
10.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.12.20210997

ABSTRACT

The extant infrastructure for child abuse surveillance, dependent on reporting by schools and healthcare professionals, has been disrupted by the pandemic. Using Google Trends and MediaCloud data, we find a drop in Internet searches and news reports about child abuse and neglect during the pandemic, which may reflect decreased scrutiny.


Subject(s)
COVID-19
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.12.20211656

ABSTRACT

Several drugs repurposed as COVID-19 treatment are in short supply. We collect data from MediaCloud and Google Health Trends about eight drugs proposed for repurposing as COVID-19 treatments and reported to be in shortage by the U.S. Food and Drug Administration from January 1, 2020 through June 30, 2020. We find that news media coverage could have contributed to shortages due to hoarding by individuals and stockpiling by institutions, and that search trends appear to accurately discriminate between individual hoarding and institutional stockpiling.


Subject(s)
COVID-19
12.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.10.13.20201855

ABSTRACT

Introduction. The Consortium for Clinical Characterization of COVID-19 by EHR (4CE) includes hundreds of hospitals internationally using a federated computational approach to COVID-19 research using the EHR. Objective. We sought to develop and validate a standard definition of COVID-19 severity from readily accessible EHR data across the Consortium. Methods. We developed an EHR-based severity algorithm and validated it on patient hospitalization data from 12 4CE clinical sites against the outcomes of ICU admission and/or death. We also used a machine learning approach to compare selected predictors of severity to the 4CE algorithm at one site. Results. The 4CE severity algorithm performed with pooled sensitivity of 0.73 and specificity 0.83 for the combined outcome of ICU admission and/or death. The sensitivity of single code categories for acuity were unacceptably inaccurate - varying by up to 0.65 across sites. A multivariate machine learning approach identified codes resulting in mean AUC 0.956 (95% CI: 0.952, 0.959) compared to 0.903 (95% CI: 0.886, 0.921) using expert-derived codes. Billing codes were poor proxies of ICU admission, with 49% precision and recall compared against chart review at one partner institution. Discussion. We developed a proxy measure of severity that proved resilient to coding variability internationally by using a set of 6 code classes. In contrast, machine-learning approaches may tend to overfit hospital-specific orders. Manual chart review revealed discrepancies even in the gold standard outcomes, possibly due to pandemic conditions. Conclusion. We developed an EHR-based algorithm for COVID-19 severity and validated it at 12 international sites.


Subject(s)
COVID-19
13.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3612991

Subject(s)
COVID-19
14.
Gabriel A Brat; Griffin M Weber; Nils Gehlenborg; Paul Avillach; Nathan P Palmer; Luca Chiovato; James Cimino; Lemuel R Waitman; Gilbert S Omenn; Alberto Malovini; Jason H Moore; Brett K Beaulieu-Jones; Valentina Tibollo; Shawn N Murphy; Sehi L'Yi; Mark S Keller; Riccardo Bellazzi; David A Hanauer; Arnaud Serret-Larmande; Alba Gutierrez-Sacristan; John H Holmes; Douglas S Bell; Kenneth D Mandl; Robert W Follett; Jeffrey G Klann; Douglas A Murad; Luigia Scudeller; Mauro Bucalo; Katie Kirchoff; Jean Craig; Jihad Obeid; Vianney Jouhet; Romain Griffier; Sebastien Cossin; Bertrand Moal; Lav P Patel; Antonio Bellasi; Hans U Prokosch; Detlef Kraska; Piotr Sliz; Amelia LM Tan; Kee Yuan Ngiam; Alberto Zambelli; Danielle L Mowery; Emily Schiver; Batsal Devkota; Robert L Bradford; Mohamad Daniar; - APHP/Universities/INSERM COVID-19 research collaboration; Christel Daniel; Vincent Benoit; Romain Bey; Nicolas Paris; Anne Sophie Jannot; Patricia Serre; Nina Orlova; Julien Dubiel; Martin Hilka; Anne Sophie Jannot; Stephane Breant; Judith Leblanc; Nicolas Griffon; Anita Burgun; Melodie Bernaux; Arnaud Sandrin; Elisa Salamanca; Thomas Ganslandt; Tobias Gradinger; Julien Champ; Martin Boeker; Patricia Martel; Alexandre Gramfort; Olivier Grisel; Damien Leprovost; Thomas Moreau; Gael Varoquaux; Jill-Jenn Vie; Demian Wassermann; Arthur Mensch; Charlotte Caucheteux; Christian Haverkamp; Guillaume Lemaitre; Ian D Krantz; Sylvie Cormont; Andrew South; - The Consortium for Clinical Characterization of COVID-19 by EHR (4CE); Tianxi Cai; Isaac S Kohane.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.13.20059691

ABSTRACT

We leveraged the largely untapped resource of electronic health record data to address critical clinical and epidemiological questions about Coronavirus Disease 2019 (COVID-19). To do this, we formed an international consortium (4CE) of 96 hospitals across 5 countries (www.covidclinical.net). Contributors utilized the Informatics for Integrating Biology and the Bedside (i2b2) or Observational Medical Outcomes Partnership (OMOP) platforms to map to a common data model. The group focused on comorbidities and temporal changes in key laboratory test values. Harmonized data were analyzed locally and converted to a shared aggregate form for rapid analysis and visualization of regional differences and global commonalities. Data covered 27,584 COVID-19 cases with 187,802 laboratory tests. Case counts and laboratory trajectories were concordant with existing literature. Laboratory tests at the time of diagnosis showed hospital-level differences equivalent to country-level variation across the consortium partners. Despite the limitations of decentralized data generation, we established a framework to capture the trajectory of COVID-19 disease in patients and their response to interventions.


Subject(s)
COVID-19
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.12.20022467

ABSTRACT

A novel coronavirus (COVID-19) was identified in Wuhan, Hubei Province, China, in December 2019 and has caused over 40,000 cases worldwide to date. Previous studies have supported an epidemiological hypothesis that cold and dry (low absolute humidity) environments facilitate the survival and spread of droplet-mediated viral diseases, and warm and humid (high absolute humidity) environments see attenuated viral transmission (i.e., influenza). However, the role of absolute humidity in transmission of COVID-19 has not yet been established. Here, we examine province-level variability of the basic reproductive numbers of COVID-19 across China and find that changes in weather alone (i.e., increase of temperature and humidity as spring and summer months arrive in the North Hemisphere) will not necessarily lead to declines in COVID-19 case counts without the implementation of extensive public health interventions.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive
SELECTION OF CITATIONS
SEARCH DETAIL